Evaluating Quasi-Monte Carlo (QMC) algorithms in blocks decomposition of de-trended

نویسنده

  • K. Fathi Vajargah Department of Statistics, Islamic Azad University, North Branch Tehran, Iran.
چکیده مقاله:

The length of equal minimal and maximal blocks has eected on logarithm-scale logarithm against sequential function on variance and bias of de-trended uctuation analysis, by using Quasi Monte Carlo(QMC) simulation and Cholesky decompositions, minimal block couple and maximal are founded which are minimum the summation of mean error square in Horest power.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

evaluating quasi-monte carlo (qmc) algorithms in blocks decomposition of de-trended

the length of equal minimal and maximal blocks has e ected on logarithm-scale logarithm against sequential function on variance and bias of de-trended uctuation analysis, by using quasi monte carlo(qmc) simulation and cholesky decompositions, minimal block couple and maximal are founded which are minimum the summation of mean error square in horest power.

متن کامل

Error in Monte Carlo, quasi-error in Quasi-Monte Carlo

While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the abscence of a reliable way to estimate that error. The standard Monte Carlo error estimator relies on the assumption that the points are generated independently of each other and, therefore, fails to account ...

متن کامل

Monte Carlo Extension of Quasi-monte Carlo

This paper surveys recent research on using Monte Carlo techniques to improve quasi-Monte Carlo techniques. Randomized quasi-Monte Carlo methods provide a basis for error estimation. They have, in the special case of scrambled nets, also been observed to improve accuracy. Finally through Latin supercube sampling it is possible to use Monte Carlo methods to extend quasi-Monte Carlo methods to hi...

متن کامل

Evaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms

Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...

متن کامل

Quasi-monte Carlo Methods in Computer Graphics, Part I: the Qmc-buuer

Monte Carlo integration is often used for antialiasing in rendering processes. Due to low sampling rates only expected error estimates can be stated, and the variance can be high. In this article quasi-Monte Carlo methods are presented, achieving a guaranteed upper error bound and a convergence rate essentially as fast as usual Monte Carlo.

متن کامل

Domain Decomposition Solution of Elliptic Boundary-Value Problems via Monte Carlo and Quasi-Monte Carlo Methods

Domain decomposition of two-dimensional domains on which boundary-value elliptic problems are formulated, is accomplished by probabilistic (Monte Carlo) as well as by quasi-Monte Carlo methods, generating only few interfacial values and interpolating on them. Continuous approximations for the trace of solution are thus obtained, to be used as boundary data for the sub-problems. The numerical tr...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 7  شماره 4

صفحات  293- 299

تاریخ انتشار 2015-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023